If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3x+3x+3x^2+3x^2=240
We move all terms to the left:
3x+3x+3x^2+3x^2-(240)=0
We add all the numbers together, and all the variables
6x^2+6x-240=0
a = 6; b = 6; c = -240;
Δ = b2-4ac
Δ = 62-4·6·(-240)
Δ = 5796
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{5796}=\sqrt{36*161}=\sqrt{36}*\sqrt{161}=6\sqrt{161}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(6)-6\sqrt{161}}{2*6}=\frac{-6-6\sqrt{161}}{12} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(6)+6\sqrt{161}}{2*6}=\frac{-6+6\sqrt{161}}{12} $
| -5h-6=-9-4h-5 | | -8x+24=-8(x-3) | | b/9=18 | | 4(5^9x)=3 | | F(x)=2(3x+4)-6 | | 7b+4/5=12 | | -5x+4x+9=-3 | | 12x+7+7x-17=180 | | 2x+9=5x–6 | | 7a+6=-5(-6 | | -33=-5x-x+3 | | -9(-8p+12)=6p | | d+15=26 | | 35+2x+1=180 | | x+10.4=-1.17 | | 5(2x+9)=-40+15 | | O=-16t^2+400 | | 1.6x+7.4=-2.6 | | 5(-10-5x)=25 | | 18+p=30 | | 2=2(x+7)-5x | | Y;-5-7y=20y+34= | | 6-n=52 | | 13+n=22 | | 3x+8x+72=-5 | | 2=w/10 | | 10-5c=2+2c-6 | | w+6/5=-9 | | 331=7+a | | -1x-2=3x-38 | | 79+2x+1=180 | | 9x+4+11=33 |